A Quality Assessment Framework for Large Datasets of Container-Trips Information

Abstract : Customs worldwide are facing the challenge of supervising huge volumes of containerized trade arriving to their country with resources allowing them to inspect only a minimal fraction of it. Risk assessment procedures can support them on the selection of the containers to inspect. The Container-Trip information (CTI) is an important element for that evaluation, but is usually not available with the needed quality. Therefore, the quality of the computed CTI records from any data sources that may use (e.g. Container Status Messages), needs to be assessed. This paper presents a quality assessment framework that combines quantitative and qualitative domain specific metrics to evaluate the quality of large datasets of CTI records and to provide a more complete feedback on which aspects need to be revised to improve the quality of the output data. The experimental results show the robustness of the framework in highlighting the weak points on the datasets and in identifying efficiently cases of potentially wrong CTI records.
Type de document :
Communication dans un congrès
Khalid Saeed; Władysław Homenda. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9842, pp.729-740, 2016, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-45378-1_63〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01637491
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 15:44:50
Dernière modification le : samedi 18 novembre 2017 - 01:16:38
Document(s) archivé(s) le : dimanche 18 février 2018 - 14:49:29

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Michail Makridis, Raúl Fidalgo-Merino, José-Antonio Cotelo-Lema, Aris Tsois, Enrico Checchi. A Quality Assessment Framework for Large Datasets of Container-Trips Information. Khalid Saeed; Władysław Homenda. 15th IFIP International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2016, Vilnius, Lithuania. Springer International Publishing, Lecture Notes in Computer Science, LNCS-9842, pp.729-740, 2016, Computer Information Systems and Industrial Management. 〈10.1007/978-3-319-45378-1_63〉. 〈hal-01637491〉

Partager

Métriques

Consultations de la notice

254