Formalization of the Lindemann-Weierstrass Theorem

Sophie Bernard 1, 2
Abstract : This article details a formalization in Coq of the Lindemann-Weierstrass theorem which gives a transcendence criterion for complex numbers: this theorem establishes a link between the linear independence of a set of algebraic numbers and the algebraic independence of the exponentials of these numbers. As we follow Baker's proof, we discuss the difficulties of its formalization and explain how we resolved them in Coq. Most of these difficulties revolve around multivariate polynomials and their relationship with the conjugates of a univariate polynomial. Their study ultimately leads to alternative forms of the fundamental theorem of symmetric polynomials. This formalization uses mainly the Mathcomp library for the part relying on algebra, and the Coquelicot library and the Coq standard library of real numbers for the calculus part.
Type de document :
Communication dans un congrès
Interactive Theorem Proving, Sep 2017, Brasilia, Brazil. 2017
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01647563
Contributeur : Sophie Bernard <>
Soumis le : vendredi 24 novembre 2017 - 13:55:26
Dernière modification le : jeudi 11 janvier 2018 - 16:49:58

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01647563, version 1

Collections

Citation

Sophie Bernard. Formalization of the Lindemann-Weierstrass Theorem. Interactive Theorem Proving, Sep 2017, Brasilia, Brazil. 2017. 〈hal-01647563〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

42