Kernels on Graphs as Proximity Measures

Abstract : Kernels and, broadly speaking, similarity measures on graphs are extensively used in graph-based unsupervised and semi-supervised learning algorithms as well as in the link prediction problem. We analytically study proximity and distance properties of various kernels and similarity measures on graphs. This can potentially be useful for recommending the adoption of one or another similarity measure in a machine learning method. Also, we numerically compare various similarity measures in the context of spectral clustering and observe that normalized heat-type similarity measures with log modification generally perform the best.
Type de document :
Communication dans un congrès
Anthony Bonato; Fan Chung Graham; Paweł Prałat. Proceedings of the 14th Workshop on Algorithms and Models for the Web Graph (WAW 2017), Jun 2017, Toronto, Canada. Springer, 10519, Lecture Notes in Computer Science
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01647915
Contributeur : Konstantin Avrachenkov <>
Soumis le : vendredi 24 novembre 2017 - 16:35:30
Dernière modification le : jeudi 11 janvier 2018 - 16:19:02

Fichier

Paper3WAW2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01647915, version 1

Collections

Citation

Konstantin Avrachenkov, Pavel Chebotarev, Dmytro Rubanov. Kernels on Graphs as Proximity Measures. Anthony Bonato; Fan Chung Graham; Paweł Prałat. Proceedings of the 14th Workshop on Algorithms and Models for the Web Graph (WAW 2017), Jun 2017, Toronto, Canada. Springer, 10519, Lecture Notes in Computer Science. 〈hal-01647915〉

Partager

Métriques

Consultations de la notice

227

Téléchargements de fichiers

70