Skip to Main content Skip to Navigation
Journal articles

Quantification of the unique continuation property for the heat equation

Laurent Bourgeois 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this paper we prove a logarithmic stability estimate in the whole domain for the solution to the heat equation with a source term and lateral Cauchy data. We also prove its optimality up to the exponent of the logarithm and show an application to the identification of the initial condition and to the convergence rate of the quasi-reversibility method.
Document type :
Journal articles
Complete list of metadata

Cited literature [22 references]  Display  Hide  Download

https://hal.inria.fr/hal-01648045
Contributor : Laurent Bourgeois <>
Submitted on : Friday, November 24, 2017 - 5:25:13 PM
Last modification on : Thursday, January 14, 2021 - 11:56:04 AM

File

article_mcrf_multi_rev2.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, AIMS, 2017, 7 (3), pp.347 - 367. ⟨10.3934/mcrf.2017012⟩. ⟨hal-01648045⟩

Share

Metrics

Record views

444

Files downloads

324