Quantification of the unique continuation property for the heat equation

Laurent Bourgeois 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this paper we prove a logarithmic stability estimate in the whole domain for the solution to the heat equation with a source term and lateral Cauchy data. We also prove its optimality up to the exponent of the logarithm and show an application to the identification of the initial condition and to the convergence rate of the quasi-reversibility method.
Type de document :
Article dans une revue
Mathematical Control and Related Fields, AIMS, 2017, 7 (3), pp.347 - 367. 〈10.3934/mcrf.2017012〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01648045
Contributeur : Laurent Bourgeois <>
Soumis le : vendredi 24 novembre 2017 - 17:25:13
Dernière modification le : jeudi 11 janvier 2018 - 06:20:23

Fichier

article_mcrf_multi_rev2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, AIMS, 2017, 7 (3), pp.347 - 367. 〈10.3934/mcrf.2017012〉. 〈hal-01648045〉

Partager

Métriques

Consultations de la notice

143

Téléchargements de fichiers

26