FP-STALKER: Tracking Browser Fingerprint Evolutions

Antoine Vastel 1 Pierre Laperdrix 2 Walter Rudametkin 1 Romain Rouvoy 1, 3
1 SPIRALS - Self-adaptation for distributed services and large software systems
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
2 DiverSe - Diversity-centric Software Engineering
Inria Rennes – Bretagne Atlantique , IRISA_D4 - LANGAGE ET GÉNIE LOGICIEL
Abstract : Browser fingerprinting has emerged as a technique to track users without their consent. Unlike cookies, fingerprinting is a stateless technique that does not store any information on devices, but instead exploits unique combinations of attributes handed over freely by browsers. The uniqueness of fingerprints allows them to be used for identification. However, browser fingerprints change over time and the effectiveness of tracking users over longer durations has not been properly addressed. In this paper, we show that browser fingerprints tend to change frequently—from every few hours to days—due to, for example, software updates or configuration changes. Yet, despite these frequent changes, we show that browser fingerprints can still be linked, thus enabling long-term tracking. FP-STALKER is an approach to link browser fingerprint evolutions. It compares fingerprints to determine if they originate from the same browser. We created two variants of FP-STALKER, a rule-based variant that is faster, and a hybrid variant that exploits machine learning to boost accuracy. To evaluate FP-STALKER, we conduct an empirical study using 98,598 fingerprints we collected from 1,905 distinct browser instances. We compare our algorithm with the state of the art and show that, on average, we can track browsers for 54.48 days, and 26 % of browsers can be tracked for more than 100 days.
Type de document :
Communication dans un congrès
Bryan Parno; Christopher Kruegel. IEEE S&P 2018 - 39th IEEE Symposium on Security and Privacy, May 2018, San Francisco, United States. IEEE, pp.1-14, Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P). 〈https://www.ieee-security.org/TC/SP2018〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01652021
Contributeur : Romain Rouvoy <>
Soumis le : samedi 2 décembre 2017 - 15:39:47
Dernière modification le : jeudi 11 janvier 2018 - 06:28:14

Fichier

FPStalker-hal-version.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01652021, version 1

Citation

Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, Romain Rouvoy. FP-STALKER: Tracking Browser Fingerprint Evolutions. Bryan Parno; Christopher Kruegel. IEEE S&P 2018 - 39th IEEE Symposium on Security and Privacy, May 2018, San Francisco, United States. IEEE, pp.1-14, Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P). 〈https://www.ieee-security.org/TC/SP2018〉. 〈hal-01652021〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

119