Fast One-Way Cellular Automata with Reversible Mealy Cells

Abstract : We investigate cellular automata that are composed of reversible components with regard to the recognition of formal languages. In particular, real-time one-way cellular automata ($\text {OCA}$) are considered which are composed of reversible Mealy automata. Moreover, we differentiate between three notions of reversibility in the Mealy automata, namely, between weak and strong reversibility as well as reversible partitioned $\text {OCA}$ which have been introduced by Morita in [14]. Here, it turns out that every real-time $\text {OCA}$ can be transformed into an equivalent real-time $\text {OCA}$ with weakly reversible automata in its cells, whereas the remaining two notions seem to be weaker. However, a non-semilinear language is provided that can be accepted by a real-time $\text {OCA}$ with strongly reversible cells. On the other hand, we present a context-free, non-regular language that is accepted by some real-time reversible partitioned $\text {OCA}$.
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [21 references]  Display  Hide  Download

https://hal.inria.fr/hal-01656358
Contributor : Hal Ifip <>
Submitted on : Tuesday, December 5, 2017 - 3:42:30 PM
Last modification on : Monday, February 26, 2018 - 1:40:02 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2020-01-01

Please log in to resquest access to the document

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Martin Kutrib, Andreas Malcher, Matthias Wendlandt. Fast One-Way Cellular Automata with Reversible Mealy Cells. 23th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2017, Milan, Italy. pp.139-150, ⟨10.1007/978-3-319-58631-1_11⟩. ⟨hal-01656358⟩

Share

Metrics

Record views

52