Descriptional Complexity and Operations – Two Non-classical Cases

Abstract : For a language family $\mathcal{L}$, a syntactic complexity measure K defined on languages of $\mathcal{L}$, a number $n\ge 1$, and an n-ary operation $\circ $ under which $\mathcal{L}$ is closed, we define $g_{\circ }^K(m_1,m_2,\dots ,m_n)$ as the set of all integers r such that there are n languages $L_i$, $1\le i\le n$, with $ K(L_i)=m_i \text { for } 1\le i\le n \text { and } K(\circ (L_1,L_2,\dots ,L_n))=r. $In this paper we study these sets for the operation union, catenation, star, complement, set-subtraction, and intersection and the measure number of accepting states (defined for regular languages) as well as for reversal, union, catenation, and star and the measures number of nonterminals, productions, and symbols (defined for context-free languages).Moreover, we discuss the change of these sets if one restricts to finite languages, unary languages, and finite unary languages.
Type de document :
Communication dans un congrès
Giovanni Pighizzini; Cezar Câmpeanu. 19th International Conference on Descriptional Complexity of Formal Systems (DCFS), Jul 2017, Milano, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10316, pp.33-44, 2017, Descriptional Complexity of Formal Systems. 〈10.1007/978-3-319-60252-3_3〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01657004
Contributeur : Hal Ifip <>
Soumis le : mercredi 6 décembre 2017 - 11:43:59
Dernière modification le : vendredi 23 février 2018 - 10:40:04

Fichier

 Accès restreint
Fichier visible le : 2020-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jürgen Dassow. Descriptional Complexity and Operations – Two Non-classical Cases. Giovanni Pighizzini; Cezar Câmpeanu. 19th International Conference on Descriptional Complexity of Formal Systems (DCFS), Jul 2017, Milano, Italy. Springer International Publishing, Lecture Notes in Computer Science, LNCS-10316, pp.33-44, 2017, Descriptional Complexity of Formal Systems. 〈10.1007/978-3-319-60252-3_3〉. 〈hal-01657004〉

Partager

Métriques

Consultations de la notice

61