Making Sense of Indoor Spaces Using Semantic Web Mining and Situated Robot Perception

Abstract : Intelligent Autonomous Robots deployed in human environments must have understanding of the wide range of possible semantic identities associated with the spaces they inhabit – kitchens, living rooms, bathrooms, offices, garages, etc. We believe robots should learn this information through their own exploration and situated perception in order to uncover and exploit structure in their environments – structure that may not be apparent to human engineers, or that may emerge over time during a deployment. In this work, we combine semantic web-mining and situated robot perception to develop a system capable of assigning semantic categories to regions of space. This is accomplished by looking at web-mined relationships between room categories and objects identified by a Convolutional Neural Network trained on 1000 categories. Evaluated on real-world data, we show that our system exhibits several conceptual and technical advantages over similar systems, and uncovers semantic structure in the environment overlooked by ground-truth annotators.
Type de document :
Communication dans un congrès
AnSWeR 2017 - 1st International Workshop on Application of Semantic Web technologies in Robotics, May 2017, Portoroz, Slovenia. pp.1-10
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01657672
Contributeur : Olivier Corby <>
Soumis le : jeudi 7 décembre 2017 - 08:37:41
Dernière modification le : vendredi 8 décembre 2017 - 01:24:12

Fichier

valerio.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01657672, version 1

Collections

Citation

Jay Young, Valerio Basile, Markus Suchi, Lars Kunze, Nick Hawes, et al.. Making Sense of Indoor Spaces Using Semantic Web Mining and Situated Robot Perception. AnSWeR 2017 - 1st International Workshop on Application of Semantic Web technologies in Robotics, May 2017, Portoroz, Slovenia. pp.1-10. 〈hal-01657672〉

Partager

Métriques

Consultations de la notice

14

Téléchargements de fichiers

3