Language Modelling for Collaborative Filtering: Application to Job Applicant Matching

Thomas Schmitt 1, 2, 3 François Gonard 4, 3 Philippe Caillou 3, 2 Michèle Sebag 2, 3
3 TAU - TAckling the Underspeficied
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : This paper addresses a collaborative retrieval problem , the recommendation of job ads to applicants. Specifically, two proprietary databases are considered. The first one focuses on the context of unskilled low-paid jobs/applicants; the second one focuses on highly qualified jobs/applicants. Each database includes the job ads and applicant resumes together with the collaborative filtering data recording the applicant clicks on job ads. The proposed approach, called LAJAM, focuses on the semi-cold start recommendation problem of recommending new job ads to known applicants. This setting is relevant to the temporary job sector, of increasing importance for current job markets. LAJAM learns a continuous language model on the job ad space, trained to comply with the collaborative filtering metrics. This language model, implemented as a neural net, can flexibly take into account heterogeneous additional information, e.g. related to the posting time and geolocation of the job ads. The merits of the LAJAM approach are demonstrated comparatively to the state of the art on the thoroughly studied CiteULike database. The comparison of the public CiteULike database with the proprietary databases sheds some light on the specific difficulties of the job applicant matching problem.
Type de document :
Communication dans un congrès
ICTAI 2017 - 29th IEEE International Conference on Tools with Artificial Intelligence, Nov 2017, Boston, United States. pp.1-8
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01659543
Contributeur : Thomas Schmitt <>
Soumis le : vendredi 8 décembre 2017 - 14:56:27
Dernière modification le : jeudi 5 avril 2018 - 12:30:26

Fichier

Job_ICTAI_30sept.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01659543, version 1

Citation

Thomas Schmitt, François Gonard, Philippe Caillou, Michèle Sebag. Language Modelling for Collaborative Filtering: Application to Job Applicant Matching. ICTAI 2017 - 29th IEEE International Conference on Tools with Artificial Intelligence, Nov 2017, Boston, United States. pp.1-8. 〈hal-01659543〉

Partager

Métriques

Consultations de la notice

322

Téléchargements de fichiers

170