A Survey on Deep Learning Based Approaches for Action and Gesture Recognition in Image Sequences

Abstract : The interest in action and gesture recognition has grown considerably in the last years. In this paper, we present a survey on current deep learning methodologies for action and gesture recognition in image sequences. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. We review the details of the proposed architectures, fusion strategies, main datasets, and competitions. We summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, discussing their main features and identify opportunities and challenges for future research.
Type de document :
Communication dans un congrès
FG 2017 - 12th IEEE Conference on Automatic Face and Gesture Recognition, May 2017, Washington, DC, United States. IEEE, Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, pp.476-483, 〈http://www.fg2017.org/〉. 〈10.1109/FG.2017.150〉
Liste complète des métadonnées

Littérature citée [139 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01668383
Contributeur : Isabelle Guyon <>
Soumis le : lundi 8 janvier 2018 - 16:13:24
Dernière modification le : jeudi 5 avril 2018 - 12:30:26

Fichier

survey_DL_FG2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Maryam Asadi-Aghbolaghi, Albert Clapes, Marco Bellantonio, Hugo Jair Escalante, Víctor Ponce-López, et al.. A Survey on Deep Learning Based Approaches for Action and Gesture Recognition in Image Sequences. FG 2017 - 12th IEEE Conference on Automatic Face and Gesture Recognition, May 2017, Washington, DC, United States. IEEE, Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, pp.476-483, 〈http://www.fg2017.org/〉. 〈10.1109/FG.2017.150〉. 〈hal-01668383〉

Partager

Métriques

Consultations de la notice

117

Téléchargements de fichiers

382