Efficient Representations for Large Dynamic Sequences in ML

Arthur Charguéraud 1 Mike Rainey 2
1 CAMUS - Compilation pour les Architectures MUlti-coeurS
Inria Nancy - Grand Est, ICube - Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie
Abstract : The use of sequence containers, including stacks, queues, and double-ended queues, is ubiquitous in programming. When the maximal number of elements is not known in advance, containers need to grow dynamically. For this purpose, most ML programs either rely on lists or vectors. These structures are inefficient, both in terms of time and space usage. We investigate the use of chunked-based data structures. Such structures save a lot of memory and may deliver better performance than classic container data structures. We observe a 2x speedup compared with vectors, and up to a 3x speedup compared with lengthy lists.
Type de document :
Poster
ML Family Workshop, Sep 2017, Oxford, United Kingdom. 2017
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01669407
Contributeur : Arthur Charguéraud <>
Soumis le : mercredi 20 décembre 2017 - 20:20:12
Dernière modification le : jeudi 26 avril 2018 - 10:27:57

Fichier

chunkseq_ml.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01669407, version 1

Collections

Citation

Arthur Charguéraud, Mike Rainey. Efficient Representations for Large Dynamic Sequences in ML. ML Family Workshop, Sep 2017, Oxford, United Kingdom. 2017. 〈hal-01669407〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

30