Recurrent Neural Network-based Fault Detector for Aileron Failures of Aircraft

Nobuyuki Yoshikawa 1 Nacim Belkhir 2 Sinji Suzuki 1
2 TAU - TAckling the Underspeficied
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : This paper empirically investigate the design of a fault detection mechanism based on Long Short Term Memory (LSTM) neural network. Given an equation based model that approximate the behavior of aircraft ailerons, the fault detector aims at predicting the state of aircraft: the normal state for which no failure are observed, or four different failure states, e.g. a delay changes. This is achieved by collecting a limited amount of command and responses data by varying the parameters of the aileron model, such that a LSTM network is used to predict the state of the aircraft of sequence of the pair commands/responses. In this empirical study we empirically demonstrated LSTM networks can be a promising approach for fault detection, and achieve reasonable performances despite a limited amount of data, in particular avoiding overfitting of the model.
Type de document :
Communication dans un congrès
ASCC 2017 - The 2017 Asian Control Conference , Dec 2017, Gold Coast, Australia
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01669540
Contributeur : Nacim Belkhir <>
Soumis le : mercredi 20 décembre 2017 - 23:12:32
Dernière modification le : jeudi 5 avril 2018 - 12:30:26

Fichier

ACSS2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01669540, version 1

Citation

Nobuyuki Yoshikawa, Nacim Belkhir, Sinji Suzuki. Recurrent Neural Network-based Fault Detector for Aileron Failures of Aircraft. ASCC 2017 - The 2017 Asian Control Conference , Dec 2017, Gold Coast, Australia. 〈hal-01669540〉

Partager

Métriques

Consultations de la notice

120

Téléchargements de fichiers

82