Differential Inference Testing A Practical Approach to Evaluate Anonymized Data

Ali Kassem 1 Gergely Acs 2 Claude Castelluccia 3
1 COMETE - Concurrency, Mobility and Transactions
Inria Saclay - Ile de France, LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau]
3 PRIVATICS - Privacy Models, Architectures and Tools for the Information Society
Inria Grenoble - Rhône-Alpes, CITI - CITI Centre of Innovation in Telecommunications and Integration of services
Abstract : In order to protect individuals' privacy, governments and institutions impose some obligations on data sharing and publishing. Mainly, they require the data to be " anonymized ". In this paper, we shortly discuss the criteria introduced by European General Data Protection Regulation to assess anonymized data. We argue that the evaluation of anonymized data should be based on whether the data allows individual based inferences, instead of being centered around the concept of re-identification as the regulation has proposed. We then propose a framework that allows us to evaluate a given (anonymized) dataset. Finally, we apply our framework to evaluate two real datasets after being anonymized using k-anonymity and l-diversity techniques.
Type de document :
[Research Report] INRIA. 2018
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

Contributeur : Ali Kassem <>
Soumis le : jeudi 11 janvier 2018 - 13:55:51
Dernière modification le : mercredi 14 novembre 2018 - 16:10:03
Document(s) archivé(s) le : mercredi 23 mai 2018 - 17:52:53


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01681014, version 1


Ali Kassem, Gergely Acs, Claude Castelluccia. Differential Inference Testing A Practical Approach to Evaluate Anonymized Data. [Research Report] INRIA. 2018. 〈hal-01681014〉



Consultations de la notice


Téléchargements de fichiers