Integrating Clipped Spherical Harmonics Expansions

Abstract : Many applications in rendering rely on integrating functions over spherical polygons. We present a new numerical solution for computing the integral of spherical harmonics expansions clipped to polygonal domains. Our solution, based on zonal decompositions of spherical integrands and discrete contour integration, introduces an important numerical operationg for spherical harmonic expansions in rendering applications. Our method is simple, efficient, and scales linearly in the bandlimited integrand's harmonic expansion. We apply our technique to problems in rendering, including surface and volume shading, hierarchical product importance sampling, and fast basis projection for interactive rendering. Moreover, we show how to handle general, non-polynomial integrands in a Monte Carlo setting using control variates. Our technique computes the integral of bandlimited spherical functions with performance competitive to (or faster than) more general numerical integration methods for a broad class of problems, both in offline and interactive rendering contexts. Our implementation is simple, relying only on self-contained spherical harmonic evaluation and discrete contour integration routines, and we release a full source CPU-only and shader-based implementations (< 750 lines of commented code).
Type de document :
Article dans une revue
ACM Trans. Graph, 2018, 37 (2)
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01695284
Contributeur : Laurent Belcour <>
Soumis le : lundi 29 janvier 2018 - 10:59:32
Dernière modification le : vendredi 23 mars 2018 - 20:05:06
Document(s) archivé(s) le : vendredi 25 mai 2018 - 15:08:15

Fichier

shint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01695284, version 1

Citation

Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, et al.. Integrating Clipped Spherical Harmonics Expansions. ACM Trans. Graph, 2018, 37 (2). 〈hal-01695284〉

Partager

Métriques

Consultations de la notice

128

Téléchargements de fichiers

1021