Combining Argumentation and Aspect-Based Opinion Mining: The SMACk System

Abstract : The extraction of the relevant and debated opinions from online social media and commercial websites is an emerging task in the opinion mining research field. Its growing relevance is mainly due to the impact of exploiting such techniques in different application domains from social science analysis to personal advertising. In this paper, we present SMACk, our opinion summary system built on top of an argumentation framework with the aim to exchange, communicate and resolve possibly conflicting viewpoints. SMACk allows the user to extract debated opinions from a set of documents containing user-generated content from online commercial websites, and to automatically identify the mostly debated positive aspects of the issue of the debate, as well as the mostly debated negative ones. The key advantage of such a framework is the combination of different methods, i.e., formal argumentation theory and natural language processing, to support users in making more informed decisions, e.g., in the context of online purchases.
Type de document :
Article dans une revue
AI Communications, IOS Press, 2018, 31 (1), pp.75 - 95. 〈10.3233/AIC-180752〉
Liste complète des métadonnées

Littérature citée [68 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01721538
Contributeur : Andrea G. B. Tettamanzi <>
Soumis le : vendredi 9 mars 2018 - 11:13:53
Dernière modification le : lundi 19 mars 2018 - 15:46:30
Document(s) archivé(s) le : dimanche 10 juin 2018 - 13:37:02

Fichier

AICommunicationsIJCAI2016-auth...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mauro Dragoni, Célia Da Costa Pereira, Andrea G. B. Tettamanzi, Serena Villata. Combining Argumentation and Aspect-Based Opinion Mining: The SMACk System. AI Communications, IOS Press, 2018, 31 (1), pp.75 - 95. 〈10.3233/AIC-180752〉. 〈hal-01721538〉

Partager

Métriques

Consultations de la notice

179

Téléchargements de fichiers

95