Cardiac Motion Evolution Model for Analysis of Functional Changes Using Tensor Decomposition and Cross-Sectional Data

Abstract : Cardiac disease can reduce the ability of the ventricles to function well enough to sustain long-term pumping efficiency. Recent advances in cardiac motion tracking have led to improvements in the analysis of cardiac function. We propose a method to study cohort effects related to age with respect to cardiac function. The proposed approach makes use of a recent method for describing cardiac motion of a given subject using a Polyaffine model, which gives a compact parameterisation that reliably and accurately describes the cardiac motion across populations. Using this method, a data tensor of motion parameters is extracted for a given population. The partial least squares method for higher-order arrays is used to build a model to describe the motion parameters with respect to age, from which a model of motion given age is derived. Based on cross-sectional statistical analysis with the data tensor of each subject treated as an observation along time, the left ventricular motion over time of Tetralogy of Fallot patients is analysed to understand the temporal evolution of functional abnormalities in this population compared to healthy motion dynamics.
Document type :
Journal articles
Complete list of metadatas

Cited literature [52 references]  Display  Hide  Download

https://hal.inria.fr/hal-01736454
Contributor : Project-Team Asclepios <>
Submitted on : Monday, May 28, 2018 - 1:54:49 PM
Last modification on : Thursday, October 3, 2019 - 3:36:02 PM
Long-term archiving on : Wednesday, August 29, 2018 - 12:36:56 PM

File

TBME2816519.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Kristin Mcleod, Kristin Tøndel, Lilian Calvet, M Sermesant, Xavier Pennec. Cardiac Motion Evolution Model for Analysis of Functional Changes Using Tensor Decomposition and Cross-Sectional Data. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, In press, 65 (12), pp.2769 - 2780. ⟨10.1109/TBME.2018.2816519⟩. ⟨hal-01736454⟩

Share

Metrics

Record views

155

Files downloads

246