Comparing Rule Evaluation Metrics for the Evolutionary Discovery of Multi-Relational Association Rules in the Semantic Web

Abstract : We carry out a comparison of popular asymmetric metrics, originally proposed for scoring association rules, as building blocks for a fitness function for evolutionary inductive programming. In particular, we use them to score candidate multi-relational association rules in an evolutionary approach to the enrichment of populated knowledge bases in the context of the Semantic Web. The evolutionary algorithm searches for hidden knowledge patterns, in the form of SWRL rules, in assertional data, while exploiting the deductive capabilities of ontologies. Our methodology is to compare the number of generated rules and total predictions when the metrics are used to compute the fitness function of the evolutionary algorithm. This comparison, which has been carried out on three publicly available ontologies, is a crucial step towards the selection of suitable metrics to score multi-relational association rules that are generated from ontologies.
Type de document :
Communication dans un congrès
Mauro Castelli; Lukás Sekanina; Mengjie Zhang; Stefano Cagnoni; Pablo García-Sánchez. Genetic Programming - 21st European Conference (EuroGP 2018), Apr 2018, Parma, Italy. Springer, Lecture Notes in Computer Science, 10781, pp.289-305, 2018, Genetic Programming - 21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018, Proceedings. 〈http://www.evostar.org/2018/〉. 〈10.1007/978-3-319-77553-1_18〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01790667
Contributeur : Andrea G. B. Tettamanzi <>
Soumis le : dimanche 13 mai 2018 - 17:34:29
Dernière modification le : mardi 15 mai 2018 - 01:23:32

Fichier

EuroGP.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Minh Tran Duc, Claudia D'Amato, Binh Nguyen, Andrea G. B. Tettamanzi. Comparing Rule Evaluation Metrics for the Evolutionary Discovery of Multi-Relational Association Rules in the Semantic Web. Mauro Castelli; Lukás Sekanina; Mengjie Zhang; Stefano Cagnoni; Pablo García-Sánchez. Genetic Programming - 21st European Conference (EuroGP 2018), Apr 2018, Parma, Italy. Springer, Lecture Notes in Computer Science, 10781, pp.289-305, 2018, Genetic Programming - 21st European Conference, EuroGP 2018, Parma, Italy, April 4-6, 2018, Proceedings. 〈http://www.evostar.org/2018/〉. 〈10.1007/978-3-319-77553-1_18〉. 〈hal-01790667〉

Partager

Métriques

Consultations de la notice

10

Téléchargements de fichiers

5