BIGMOMAL — Big Data Analytics for Mobile Malware Detection

Abstract : Mobile malware is on the rise. Indeed, due to their popularity, smartphones represent an attractive target for cybercriminals, especially because of private user data, as these devices incorporate a lot of sensitive information about users, even more than a personal computer. As a matter of fact, besides personal information such as documents, accounts, passwords, and contacts, smartphone sensors centralise other sensitive data including user location and physical activities. In this paper, we study the problem of malware detection in smartphones, relying on supervised-machine-learning models and big-data analytics frameworks. Using the SherLock dataset, a large, publicly available dataset for smartphone-data analysis, we train and benchmark tree-based models to identify running applications and to detect malware activity. We verify their accuracy, and initial results suggest that decision trees are capable of identifying running apps and malware activity with high accuracy.
Type de document :
Communication dans un congrès
ACM SIGCOMM 2018 Workshop on Traffic Measurements for Cybersecurity (WTMC 2018), Aug 2018, Budapest, Hungary. 〈https://conferences.sigcomm.org/sigcomm/2018/workshop-wtmc.html〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01812448
Contributeur : Sarah Wassermann <>
Soumis le : lundi 11 juin 2018 - 17:40:02
Dernière modification le : vendredi 28 septembre 2018 - 17:20:40
Document(s) archivé(s) le : mercredi 12 septembre 2018 - 19:37:43

Fichier

bigmomal_wtmc_2018_embedded.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01812448, version 1

Collections

Citation

Sarah Wassermann, Pedro Casas. BIGMOMAL — Big Data Analytics for Mobile Malware Detection. ACM SIGCOMM 2018 Workshop on Traffic Measurements for Cybersecurity (WTMC 2018), Aug 2018, Budapest, Hungary. 〈https://conferences.sigcomm.org/sigcomm/2018/workshop-wtmc.html〉. 〈hal-01812448〉

Partager

Métriques

Consultations de la notice

1143

Téléchargements de fichiers

431