Symmetry Aware Evaluation of 3D Object Detection and Pose Estimation in Scenes of Many Parts in Bulk

Romain Brégier 1, 2 Frédéric Devernay 3, 4 Laetitia Leyrit 5 James Crowley 6
3 PRIMA - Perception, recognition and integration for observation of activity
Inria Grenoble - Rhône-Alpes, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble , CNRS - Centre National de la Recherche Scientifique : UMR5217
4 IMAGINE - Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
6 PERVASIVE INTERACTION
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : While 3D object detection and pose estimation has been studied for a long time, its evaluation is not yet completely satisfactory. Indeed, existing datasets typically consist in numerous acquisitions of only a few scenes because of the tediousness of pose annotation, and existing evaluation protocols cannot handle properly objects with symmetries. This work aims at addressing those two points. We first present automatic techniques to produce fully annotated RGBD data of many object instances in arbitrary poses, with which we produce a dataset of thousands of independent scenes of bulk parts composed of both real and synthetic images. We then propose a consistent evaluation methodology suitable for any rigid object, regardless of its symmetries. We illustrate it with two reference object detection and pose estimation methods on different objects, and show that incorporating symmetry considerations into pose estimation methods themselves can lead to significant performance gains. The proposed dataset is available at http://rbregier.github.io/dataset2017.
Type de document :
Communication dans un congrès
2017 IEEE International Conference on Computer Vision Workshop (ICCVW), Oct 2017, Venice, France. IEEE, pp.2209-2218, 〈10.1109/ICCVW.2017.258〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01819659
Contributeur : Romain Brégier <>
Soumis le : mercredi 20 juin 2018 - 17:40:37
Dernière modification le : jeudi 11 octobre 2018 - 08:48:05
Document(s) archivé(s) le : mardi 25 septembre 2018 - 20:27:19

Identifiants

Citation

Romain Brégier, Frédéric Devernay, Laetitia Leyrit, James Crowley. Symmetry Aware Evaluation of 3D Object Detection and Pose Estimation in Scenes of Many Parts in Bulk. 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), Oct 2017, Venice, France. IEEE, pp.2209-2218, 〈10.1109/ICCVW.2017.258〉. 〈hal-01819659〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

100