Glanceable Visualization: Studies of Data Comparison Performance on Smartwatches - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Visualization and Computer Graphics Year : 2019

Glanceable Visualization: Studies of Data Comparison Performance on Smartwatches

(1) , (1) , (2, 3) , (4) , (1)
1
2
3
4
Tanja Blascheck
Lonni Besançon
Bongshin Lee
  • Function : Author
  • PersonId : 924363
Petra Isenberg

Abstract

We present the results of two perception studies to assess how quickly people can perform a simple data comparison task for small-scale visualizations on a smartwatch. The main goal of these studies is to extend our understanding of design constraints for smartwatch visualizations. Previous work has shown that a vast majority of smartwatch interactions last under 5 s. It is still unknown what people can actually perceive from visualizations during such short glances, in particular with such a limited display space of smartwatches. To shed light on this question, we conducted two perception studies that assessed the lower bounds of task time for a simple data comparison task. We tested three chart types common on smartwatches: bar charts, donut charts, and radial bar charts with three different data sizes: 7, 12, and 24 data values. In our first study, we controlled the differences of the two target bars to be compared, while the second study varied the difference randomly. For both studies, we found that participants performed the task on average in <300 ms for the bar chart, <220 ms for the donut chart, and in <1780 ms for the radial bar chart. Thresholds in the second study per chart type were on average 1.14--1.35x, higher than in the first study. Our results show that bar and donut charts should be preferred on smartwatch displays when quick data comparisons are necessary.
Fichier principal
Vignette du fichier
Blascheck_2018_Glanceable_Visualization.pdf (3.34 Mo) Télécharger le fichier
Vignette du fichier
WatchWithStimulus-Cut-evenSmaller.jpg (165.14 Ko) Télécharger le fichier
Vignette du fichier
d120a.png (16.45 Ko) Télécharger le fichier
Vignette du fichier
smartwatch.jpg (112.89 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01851306 , version 1 (29-07-2018)

Identifiers

Cite

Tanja Blascheck, Lonni Besançon, Anastasia Bezerianos, Bongshin Lee, Petra Isenberg. Glanceable Visualization: Studies of Data Comparison Performance on Smartwatches. IEEE Transactions on Visualization and Computer Graphics, 2019, 25 (1), pp.616--629. ⟨10.1109/TVCG.2018.2865142⟩. ⟨hal-01851306⟩
548 View
774 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More