A Temporal Model for Interactive Diagnosis of Adaptive Systems

Abstract : The evolving complexity of adaptive systems impairs our ability to deliver anomaly-free solutions. Fixing these systems require a deep understanding on the reasons behind decisions which led to faulty or suboptimal system states. Developers thus need diagnosis support that trace system states to the previous circumstances –targeted requirements, input context– that had resulted in these decisions. However, the lack of efficient temporal representation limits the tracing ability of current approaches. To tackle this problem, we describe a novel temporal data model to represent, store and query decisions as well as their relationship with the knowledge (context, requirements, and actions). We validate our approach through a use case based on the smart grid at Luxembourg.
Type de document :
Communication dans un congrès
ICAC 2018 - IEEE International Conference on Autonomic Computing, Sep 2018, Trento, Italy. pp.1-6, 〈http://icac2018.informatik.uni-wuerzburg.de/〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01862964
Contributeur : Ludovic Mouline <>
Soumis le : mardi 28 août 2018 - 09:28:49
Dernière modification le : mercredi 12 septembre 2018 - 11:31:43

Fichier

preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01862964, version 1

Citation

Ludovic Mouline, Amine Benelallam, François Fouquet, Johann Bourcier, Olivier Barais. A Temporal Model for Interactive Diagnosis of Adaptive Systems. ICAC 2018 - IEEE International Conference on Autonomic Computing, Sep 2018, Trento, Italy. pp.1-6, 〈http://icac2018.informatik.uni-wuerzburg.de/〉. 〈hal-01862964〉

Partager

Métriques

Consultations de la notice

109

Téléchargements de fichiers

58