NP-completeness of small conflict set generation for congruence closure

Abstract : The efficiency of Satisfiability Modulo Theories (SMT) solvers is dependent on the capability of theory reasoners to provide small conflict sets, i.e. small unsatisfiable subsets from unsatisfiable sets of literals. Decision procedures for uninterpreted symbols (i.e. congruence closure algorithms) date back from the very early days of SMT. Nevertheless, to the best of our knowledge , the complexity of generating smallest conflict sets for sets of literals with uninterpreted symbols and equalities had not yet been determined, although the corresponding decision problem was believed to be NP-complete. We provide here an NP-completeness proof, using a simple reduction from SAT.
Type de document :
Article dans une revue
Formal Methods in System Design, Springer Verlag, 2017, 51 (3), pp.533 - 544. 〈10.1007/s10703-017-0283-x〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01908684
Contributeur : Pascal Fontaine <>
Soumis le : mardi 30 octobre 2018 - 14:20:49
Dernière modification le : vendredi 9 novembre 2018 - 11:04:54

Fichier

SMT.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Andreas Fellner, Pascal Fontaine, Bruno Woltzenlogel Paleo. NP-completeness of small conflict set generation for congruence closure. Formal Methods in System Design, Springer Verlag, 2017, 51 (3), pp.533 - 544. 〈10.1007/s10703-017-0283-x〉. 〈hal-01908684〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

9