Evaluation of speech unit modelling for HMM-based speech synthesis for Arabic

Amal Houidhek 1 Vincent Colotte 1 Zied Mnasri 2 Denis Jouvet 1
1 MULTISPEECH - Speech Modeling for Facilitating Oral-Based Communication
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : This paper investigates the use of hidden Markov models (HMM) for Modern Standard Arabic speech synthesis. HMM-basedspeech synthesis systems require a description of each speech unit with a set of contextual features that specifies phonetic,phonological and linguistic aspects. To apply this method to Arabic language, a study of its particularities was conductedto extract suitable contextual features. Two phenomena are highlighted: vowel quantity and gemination. This work focuseson how to model geminated consonants (resp. long vowels), either considering them as fully-fledged phonemes or as thesame phonemes as their simple (resp. short) counterparts but with a different duration. Four modelling approaches have beenproposed for this purpose. Results of subjective and objective evaluations show that there is no important difference betweendifferentiating modelling units associated to geminated consonants (resp. long vowels) from modelling units associated tosimple consonants (resp. short vowels) and merging them as long as gemination and vowel quantity information is includedin the set of features.
Type de document :
Article dans une revue
International Journal of Speech Technology, Springer Verlag, 2018, pp.1-12. 〈10.1007/s10772-018-09558-6〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01936963
Contributeur : Vincent Colotte <>
Soumis le : dimanche 2 décembre 2018 - 22:10:17
Dernière modification le : mardi 18 décembre 2018 - 16:38:02

Fichier

IJST_Accepted_Version.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Amal Houidhek, Vincent Colotte, Zied Mnasri, Denis Jouvet. Evaluation of speech unit modelling for HMM-based speech synthesis for Arabic. International Journal of Speech Technology, Springer Verlag, 2018, pp.1-12. 〈10.1007/s10772-018-09558-6〉. 〈hal-01936963〉

Partager

Métriques

Consultations de la notice

45

Téléchargements de fichiers

74