Executing, Comparing, and Reusing Linked Data-Based Recommendation Algorithms With the Allied Framework

Abstract : Data published on the Web following the Linked Data principles has resulted in a global data space called the Web of Data. These principles led to semantically interlink and connect different resources at data level regardless their structure, authoring, location, etc. The tremendous and continuous growth of the Web of Data also implies that now it is more likely to find resources that describe real-life concepts. However, discovering and recommending relevant related resources is still an open research area. This chapter studies recommender systems that use Linked Data as a source containing a significant amount of available resources and their relationships useful to produce recommendations. Furthermore, it also presents a framework to deploy and execute state-of-the-art algorithms for Linked Data that have been re-implemented to measure and benchmark them in different application domains and without being bound to a unique dataset.
Type de document :
Chapitre d'ouvrage
Semantic Web Science and Real-World Applications, pp.18-47, 2019
Liste complète des métadonnées

https://hal.inria.fr/hal-01939482
Contributeur : Oscar Rodríguez Rocha <>
Soumis le : vendredi 7 décembre 2018 - 11:04:39
Dernière modification le : samedi 8 décembre 2018 - 01:20:49

Fichier

IJSWIS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01939482, version 1

Collections

Citation

Cristhian Figueroa, Iacopo Vagliano, Oscar Rodríguez Rocha, Marco Torchiano, Catherine Faron Zucker, et al.. Executing, Comparing, and Reusing Linked Data-Based Recommendation Algorithms With the Allied Framework. Semantic Web Science and Real-World Applications, pp.18-47, 2019. 〈hal-01939482〉

Partager

Métriques

Consultations de la notice

24

Téléchargements de fichiers

11