AtlasNet: Multi-atlas Non-linear Deep Networks for Medical Image Segmentation

Abstract : Deep learning methods have gained increasing attention in addressing segmentation problems for medical images analysis despite the challenges inherited from the medical domain, such as limited data availability, lack of consistent textural or salient patterns, and high di-mensionality of the data. In this paper, we introduce a novel multi-network architecture that exploits domain knowledge to address those challenges. The proposed architecture consists of multiple deep neural networks that are trained after co-aligning multiple anatomies through multi-metric deformable registration. This multi-network architecture can be trained with fewer examples and leads to better performance, robustness and generalization through consensus. Comparable to human accuracy, highly promising results on the challenging task of interstitial lung disease segmentation demonstrate the potential of our approach.
Type de document :
Communication dans un congrès
International Conference on Medical Image Computing and Computer-Assisted Intervention, Sep 2018, Granada, Spain
Liste complète des métadonnées

https://hal.inria.fr/hal-01958236
Contributeur : Maria Vakalopoulou <>
Soumis le : lundi 17 décembre 2018 - 18:52:46
Dernière modification le : mercredi 20 février 2019 - 01:28:57

Fichier

Vakalopoulou_etal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01958236, version 1

Citation

Maria Vakalopoulou, Guillaume Chassagnon, Norbert Bus, Rafael Marini Silva, Evangelia Zacharaki, et al.. AtlasNet: Multi-atlas Non-linear Deep Networks for Medical Image Segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, Sep 2018, Granada, Spain. 〈hal-01958236〉

Partager

Métriques

Consultations de la notice

47

Téléchargements de fichiers

238