Low Time Complexity Algorithms for Path Computation in Cayley Graphs

Abstract : We study the problem of path computation in Cayley Graphs (CG) from an approach of word processing in groups. This approach consists in encoding the topological structure of CG in an automaton called Diff , then techniques of word processing are applied for computing the shortest paths. We present algorithms for computing the K-shortest paths, the shortest disjoint paths and the shortest path avoiding a set of nodes and edges. For any CG with diameter D, the time complexity of the proposed algorithms is O(KD|Diff |), where |Diff | denotes the size of Diff. We show that our proposal outperforms the state of art of topology-agnostic algorithms for disjoint shortest paths and stays competitive with respect to proposals for specific families of CG. Therefore, the proposed algorithms set a base in the design of adaptive and low-complexity routing schemes for networks whose interconnections are defined by CG.
Complete list of metadatas

Cited literature [20 references]  Display  Hide  Download

https://hal.inria.fr/hal-01973608
Contributor : David Coudert <>
Submitted on : Tuesday, January 8, 2019 - 1:57:39 PM
Last modification on : Monday, September 9, 2019 - 1:42:01 PM
Long-term archiving on : Tuesday, April 9, 2019 - 4:36:29 PM

File

cga_final.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Daniela Aguirre-Guerrero, Guillaume Ducoffe, Lluis Fabrega, Pere Vila, David Coudert. Low Time Complexity Algorithms for Path Computation in Cayley Graphs. Discrete Applied Mathematics, Elsevier, 2019, 259, pp.218-225. ⟨10.1016/j.dam.2018.12.005⟩. ⟨hal-01973608⟩

Share

Metrics

Record views

198

Files downloads

67