Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider

Adrian Pol 1 Gianluca Cerminara 1 Cécile Germain 2 Maurizio Pierini 1 Agrima Seth 1
2 TAU - TAckling the Underspecified
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Reliable data quality monitoring is a key asset in delivering collision data suitable for physics analysis in any modern large-scale High Energy Physics experiment. This paper focuses on the use of artificial neu-ral networks for supervised and semi-supervised problems related to the identification of anomalies in the data collected by the CMS muon detectors. We use deep neural networks to analyze LHC collision data, represented as images organized geographically. We train a classifier capable of detecting the known anomalous behaviors with unprecedented efficiency and explore the usage of convolutional autoencoders to extend anomaly detection capabilities to unforeseen failure modes. A generalization of this strategy could pave the way to the automation of the data quality assessment process for present and future high-energy physics experiments.
Liste complète des métadonnées

https://hal.inria.fr/hal-01976256
Contributeur : Cecile Germain <>
Soumis le : mercredi 9 janvier 2019 - 20:23:22
Dernière modification le : samedi 12 janvier 2019 - 01:13:28

Fichier

1808.00911v1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01976256, version 1
  • ARXIV : 1808.00911

Citation

Adrian Pol, Gianluca Cerminara, Cécile Germain, Maurizio Pierini, Agrima Seth. Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider. 2019. 〈hal-01976256〉

Partager

Métriques

Consultations de la notice

53

Téléchargements de fichiers

45