Auditory and tactile recognition of resonant material vibrations in a passive task of bouncing perception

Abstract : Besides vision and audition, everyday materials can be passively explored also using touch if they provide tactile feedback to users, for instance in consequence of an external force exciting their natural resonances. If such resonances are known to provide informative auditory cues of material, on the other hand their role when a recognition is made through touch is debatable. Even more questionable is a material recognition from their reproductions: if happening, then they could be used to enrich existing touch-screen interactions with ecological auditory and haptic feedback furthermore requiring inexpensive actuation. With this goal in mind, two experiments are proposed evaluating user’s ability to classify wooden, plastic, and metallic surfaces respectively using auditory and haptic cues. Al- though the literature reports successful auditory classification of everyday material simulations, especially the passive recognition of such material reproductions by holding a finger on a vibrating glass surface has never been tested. By separately reproducing the sound and vibration of a ping-pong ball bouncing on wood, plastic and metal surfaces, our tests report not only auditory, but also tac- tile recognition of the same materials significantly above chance. Discrepancies existing between our and previously reported results are discussed.
Document type :
Conference papers
Complete list of metadatas
Contributor : Thomas Pietrzak <>
Submitted on : Thursday, February 7, 2019 - 4:36:54 PM
Last modification on : Tuesday, February 12, 2019 - 1:33:12 AM
Long-term archiving on : Wednesday, May 8, 2019 - 3:05:44 PM


Files produced by the author(s)


  • HAL Id : hal-02011109, version 1



Yuri de Pra, Federico Fontana, Hanna Järveläinen, Stefano Papetti, Michele Simonato, et al.. Auditory and tactile recognition of resonant material vibrations in a passive task of bouncing perception. International Workshop on Haptic and Audio Interaction Design - HAID2019, Mar 2019, Lille, France. ⟨hal-02011109⟩



Record views


Files downloads