Extended Gaze Following: Detecting Objects in Videos Beyond the Camera Field of View - Archive ouverte HAL Access content directly
Conference Papers Year :

Extended Gaze Following: Detecting Objects in Videos Beyond the Camera Field of View

(1) , (1, 2) , (1, 3) , (1)
1
2
3

Abstract

In this paper we address the problems of detecting objects of interest in a video and of estimating their locations, solely from the gaze directions of people present in the video. Objects can be indistinctly located inside or outside the camera field of view. We refer to this problem as extended gaze following. The contributions of the paper are the followings. First, we propose a novel spatial representation of the gaze directions adopting a top-view perspective. Second, we develop several convolutional encoder/decoder networks to predict object locations and compare them with heuristics and with classical learning-based approaches. Third, in order to train the proposed models, we generate a very large number of synthetic scenarios employing a probabilistic formulation. Finally, our methodology is empirically validated using a publicly available dataset.
Fichier principal
Vignette du fichier
Masse_FG2019.pdf (5.86 Mo) Télécharger le fichier
Vignette du fichier
Masse_FG2019_supp.pdf (1.6 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02054236 , version 1 (01-03-2019)

Identifiers

Cite

Benoit Massé, Stéphane Lathuilière, Pablo Mesejo, Radu Horaud. Extended Gaze Following: Detecting Objects in Videos Beyond the Camera Field of View. FG 2019 - 14th IEEE International Conference on Automatic Face and Gesture Recognition, May 2019, Lille, France. pp.1-8, ⟨10.1109/FG.2019.8756555⟩. ⟨hal-02054236⟩
109 View
116 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More