SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing - Archive ouverte HAL Access content directly
Conference Papers Year :

SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing

(1) , (1) , (2)
1
2

Abstract

This paper proposes an innovative Floating Point (FP) architecture for Variable Precision (VP) computation suitable for high precision FP computing, based on a refined version of the UNUM type I format. This architecture supports VP FP intervals where each interval endpoint can have up to 512 bits of mantissa. The proposed hardware architecture is pipelined and has an internal word-size of 64 bits. Computations on longer mantissas are performed iteratively on the existing hardware. The prototype is integrated in a RISC-V environment, it is exposed to the user through an instruction set extension. The paper we provide an example of software usage. The system has been prototyped on a FPGA (Field-Programmable Gate Array) platform and also synthesized for a 28nm FDSOI process technology. The respective working frequency of FPGA and ASIC implementations are 50MHz and 600MHz. The estimated chip area is 1.5mm 2 and the estimated power consumption is 95mW. The flops performance of this architecture remains within the range of a regular fixed-precision IEEE FPU while enabling arbitrary precision computation at reasonable cost.
Fichier principal
Vignette du fichier
2019-CoNGA-SMURF.pdf (1.06 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02087098 , version 1 (01-04-2019)

Identifiers

Cite

Andrea Bocco, Yves Durand, Florent de Dinechin. SMURF: Scalar Multiple-precision Unum Risc-V Floating-point Accelerator for Scientific Computing. CoNGA 2019 - Conference on Next-Generation Arithmetic, Mar 2019, Singapour, Singapore. pp.1-8, ⟨10.1145/3316279.3316280⟩. ⟨hal-02087098⟩
264 View
786 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More