Skip to Main content Skip to Navigation
Conference papers

Adjoint computation and Backpropagation

Guillaume Pallez 1
1 TADAAM - Topology-Aware System-Scale Data Management for High-Performance Computing
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest
Abstract : In this talk Dr Pallez will discuss the impact of memory in the computation of automatic differentiation or for the backpropagation step of machine learning algorithms. He will show different strategies based on the amount of memory available. In particular he will discuss optimal strategies when one can reuse memory slots, and when considering a hierarchical memory platform
Complete list of metadatas

Cited literature [5 references]  Display  Hide  Download

https://hal.inria.fr/hal-02400746
Contributor : Guillaume Pallez (aupy) <>
Submitted on : Monday, December 9, 2019 - 4:16:51 PM
Last modification on : Tuesday, December 17, 2019 - 2:25:13 AM
Document(s) archivé(s) le : Tuesday, March 10, 2020 - 8:43:14 PM

File

aupy_royal_society.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02400746, version 1

Collections

Citation

Guillaume Pallez. Adjoint computation and Backpropagation. Meeting of the Royal Society -- Numerical algorithms for high-performance computational science, Apr 2019, London, United Kingdom. ⟨hal-02400746⟩

Share

Metrics

Record views

29

Files downloads

52