Degree and height estimates for modular equations on PEL Shimura varieties - Archive ouverte HAL Access content directly
Journal Articles Journal of the London Mathematical Society Year : 2022

Degree and height estimates for modular equations on PEL Shimura varieties

Abstract

We define modular equations in the setting of PEL Shimura varieties as equations describing Hecke correspondences, and prove upper bounds on their degrees and heights. This extends known results about elliptic modular polynomials, and implies complexity bounds for number-theoretic algorithms using these modular equations. In particular, we obtain tight degree bounds for modular equations of Siegel and Hilbert type for abelian surfaces.
Fichier principal
Vignette du fichier
heights-modpol.pdf (561.56 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02436057 , version 1 (12-01-2020)
hal-02436057 , version 2 (06-03-2020)
hal-02436057 , version 3 (14-05-2021)
hal-02436057 , version 4 (16-08-2021)

Identifiers

Cite

Jean Kieffer. Degree and height estimates for modular equations on PEL Shimura varieties. Journal of the London Mathematical Society, 2022, 105 (2), pp.1314-1361. ⟨10.1112/jlms.12540⟩. ⟨hal-02436057v4⟩
160 View
93 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More