Skip to Main content Skip to Navigation
Journal articles

metric-learn: Metric Learning Algorithms in Python

William de Vazelhes 1 Cj Carey 2 Yuan Tang 3 Nathalie Vauquier 4 Aurélien Bellet 4
4 MAGNET - Machine Learning in Information Networks
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189
Abstract : metric-learn is an open source Python package implementing supervised and weaklysupervised distance metric learning algorithms. As part of scikit-learn-contrib, it provides a unified interface compatible with scikit-learn which allows to easily perform cross-validation, model selection, and pipelining with other machine learning estimators. metric-learn is thoroughly tested and available on PyPi under the MIT license.
Complete list of metadatas

https://hal.inria.fr/hal-03100076
Contributor : Aurélien Bellet <>
Submitted on : Wednesday, January 6, 2021 - 2:37:37 PM
Last modification on : Thursday, January 7, 2021 - 3:39:11 AM

File

jmlr20.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-03100076, version 1

Citation

William de Vazelhes, Cj Carey, Yuan Tang, Nathalie Vauquier, Aurélien Bellet. metric-learn: Metric Learning Algorithms in Python. Journal of Machine Learning Research, Microtome Publishing, 2020, 21, pp.1-6. ⟨hal-03100076⟩

Share

Metrics

Record views

12

Files downloads

37