Nonlinear dimension reduction for surrogate modeling using gradient information - Inria - Institut national de recherche en sciences et technologies du numérique
Article Dans Une Revue Information and Inference Année : 2022

Nonlinear dimension reduction for surrogate modeling using gradient information

Résumé

We introduce a method for the nonlinear dimension reduction of a high-dimensional function u:RdR, d1. Our objective is to identify a nonlinear feature map g:RdRm, with a prescribed intermediate dimension md, so that u can be well approximated by fg for some profile function f:RmR. We propose to build the feature map by aligning the Jacobian g with the gradient u, and we theoretically analyze the properties of the resulting g. Once g is built, we construct f by solving a gradient-enhanced least squares problem. Our practical algorithm makes use of a sample {x(i),u(x(i)),u(x(i))}Ni=1 and builds both g and f on adaptive downward-closed polynomial spaces, using cross validation to avoid overfitting. We numerically evaluate the performance of our algorithm across different benchmarks, and explore the impact of the intermediate dimension m. We show that building a nonlinear feature map g can permit more accurate approximation of u than a linear g, for the same input data set.
Fichier principal
Vignette du fichier
preprint.pdf (1.15 Mo) Télécharger le fichier
preprint.zip (1017.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03146362 , version 1 (19-02-2021)

Identifiants

Citer

Daniele Bigoni, Youssef Marzouk, Clémentine Prieur, Olivier Zahm. Nonlinear dimension reduction for surrogate modeling using gradient information. Information and Inference, 2022, ⟨10.1093/imaiai/iaac006⟩. ⟨hal-03146362⟩
219 Consultations
475 Téléchargements

Altmetric

Partager

More