RDF: A Reconfigurable Dataflow Model of Computation - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 2021

RDF: A Reconfigurable Dataflow Model of Computation

RDF: Un modèle de calcul flot de données reconfigurable

(1) , (1) , (2) , (1) , (1)
1
2

Abstract

Dataflow Models of Computation (MoCs) are widely used in embedded systems, including multimedia processing, digital signal processing, telecommunications, and automatic control. In a dataflow MoC, an application is specified as a graph of actors connected by FIFO channels. One of the first and most popular dataflow MoCs, Synchronous Dataflow (SDF), provides static analyses to guarantee boundedness and liveness, which are key properties for embedded systems. However, SDF and most of its variants lacks the capability to express the dynamism needed by modern streaming applications. In particular, the applications mentioned above have a strong need for reconfigurability to accommodate changes in the input data, the control objectives, or the environment. We address this need by proposing a new MoC called Reconfigurable Dataflow (RDF). RDF extends SDF with transformation rules that specify how and when the topology and actors of the graph may be reconfigured. Starting from an initial RDF graph and a set of transformation rules, an arbitrary number of new RDF graphs can be generated at runtime. A key feature of RDF is that it can be statically analyzed to guarantee that all possible graphs generated at runtime will be consistent and live. We introduce the RDF MoC, describe its associated static analyses, and present its implementation and some experimental results.
Les modèles de calcul (MoCs) flot de données synchrones sont très utilisés dans les systèmes embarqués et les applications multimédia, de traitement du signal, de télécommunication et de contrôle automatique. Dans ce style de modèle, une application est spécifiée par un graphe d’acteurs connectés par des liens FIFO de communication. Un des MoCs les plus connus, SDF (pour Synchronous Dataflow), permet des analyses statiques qui garantissent l’exécution en mémoire bornée et l’absence d’interblocage, propriétés clés pour les systèmes embarqués. Néanmoins, SDF (et la plupart de ses variantes) ne permet pas d’exprimer la dynamicité requise par les applications embarquées modernes. En particulier, ces applications ont souvent besoin de se reconfigurer pour s’adapter aux changements (par ex., de débit ou de qualité) du flot d’entrée, des objectifs de contrôle ou de l’environnement. Afin de répondre à ce besoin, nous proposons RDF (pour Reconfigurable DataFlow) un MoC qui étend SDF avec des règles de transformations spécifiant comment la topologie du graphe flot de données peut être reconfiguré dynamiquement. En considérant un graphe SDF initial et un ensemble de règles de transformation, un nombre arbitraire de nouveaux graphes peuvent être produits. La principale qualité de RDF est qu’il peut être analysé statiquement pour garantir que tous les graphes générés dynamiquement s’exécuteront en mémoire bornée et sans interblocage. Nous présentons le modèle RDF, les analyses statiques associées, sa mise en oeuvre et quelques expérimentations.
Fichier principal
Vignette du fichier
RR9439.pdf (870.17 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03495883 , version 1 (20-12-2021)

Identifiers

  • HAL Id : hal-03495883 , version 1

Cite

Pascal Fradet, Alain Girault, Ruby Krishnaswamy, Xavier Nicollin, Arash Shafiei. RDF: A Reconfigurable Dataflow Model of Computation. [Research Report] RR-9439, Inria Grenoble Rhône-Alpes, Université de Grenoble. 2021. ⟨hal-03495883⟩
37 View
60 Download

Share

Gmail Facebook Twitter LinkedIn More