TIDE: Time Derivative Diffusion for Deep Learning on Graphs - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Communication Dans Un Congrès Année : 2023

TIDE: Time Derivative Diffusion for Deep Learning on Graphs

Résumé

A prominent paradigm for graph neural networks is based on the message-passing framework. In this framework, information communication is realized only between neighboring nodes. The challenge of approaches that use this paradigm is to ensure efficient and accurate long-distance communication between nodes, as deep convolutional networks are prone to oversmoothing. In this paper, we present a novel method based on time derivative graph diffusion (TIDE) to overcome these structural limitations of the message-passing framework. Our approach allows for optimizing the spatial extent of diffusion across various tasks and network channels, thus enabling medium and long-distance communication efficiently. Furthermore, we show that our architecture design also enables local message-passing and thus inherits from the capabilities of local message-passing approaches. We show that on both widely used graph benchmarks and synthetic mesh and graph datasets, the proposed framework outperforms state-of-the-art methods by a significant margin.

Domaines

Informatique
Fichier principal
Vignette du fichier
ICML2023_TIDE.pdf (2.33 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04352364 , version 1 (19-12-2023)

Identifiants

  • HAL Id : hal-04352364 , version 1

Citer

Maysam Behmanesh, Maximilian Krahn, Maks Ovsjanikov. TIDE: Time Derivative Diffusion for Deep Learning on Graphs. ICML 2023 - The 40th annual International Conference on Machine Learning, Jul 2023, Honolulu, United States. ⟨hal-04352364⟩
33 Consultations
15 Téléchargements

Partager

Gmail Facebook X LinkedIn More