A Hybrid Algorithm Combining Population Pharmacokinetic and Machine Learning for Isavuconazole Exposure Prediction - Inria - Institut national de recherche en sciences et technologies du numérique
Article Dans Une Revue Pharmaceutical Research Année : 2023

A Hybrid Algorithm Combining Population Pharmacokinetic and Machine Learning for Isavuconazole Exposure Prediction

Résumé

Objectives Maximum a posteriori Bayesian estimation (MAP-BE) based on a limited sampling strategy and a population pharmacokinetic (POPPK) model is used to estimate individual pharmacokinetic parameters. Recently, we proposed a methodology that combined population pharmacokinetic and machine learning (ML) to decrease the bias and imprecision in individual iohexol clearance prediction. The aim of this study was to confirm the previous results by developing a hybrid algorithm combining POPPK, MAP-BE and ML that accurately predicts isavuconazole clearance. Methods A total of 1727 isavuconazole rich PK profiles were simulated using a POPPK model from the literature, and MAP-BE was used to estimate the clearance based on: (i) the full PK profiles (refCL); and (ii) C24h only (C24h-CL). Xgboost was trained to correct the error between refCL and C24h-CL in the training dataset (75%). C24h-CL as well as ML-corrected C24h-CL were evaluated in a testing dataset (25%) and then in a set of PK profiles simulated using another published POPPK model. Results A strong decrease in mean predictive error (MPE%), imprecision (RMSE%) and the number of profiles outside ± 20% MPE% (n-out20%) was observed with the hybrid algorithm (decreased in MPE% by 95.8% and 85.6%; RMSE% by 69.5% and 69.0%; n-out20% by 97.4% and 100% in the training and testing sets, respectively. In the external validation set, the hybrid algorithm decreased MPE% by 96%, RMSE% by 68% and n-out20% by 100%. Conclusion The hybrid model proposed significantly improved isavuconazole AUC estimation over MAP-BE based on the sole C24h and may improve dose adjustment.
Fichier principal
Vignette du fichier
clean_Isavuconazole_revisions_corJBW_AD_JBW_kp.pdf (735.77 Ko) Télécharger le fichier
Figure 1.pdf (9.4 Ko) Télécharger le fichier
Figure 2.pdf (204.2 Ko) Télécharger le fichier
Figure 3.pdf (104.11 Ko) Télécharger le fichier
Figure 4.pdf (4.78 Ko) Télécharger le fichier
Figure 5_new.pdf (32.6 Ko) Télécharger le fichier
Supplemental Table 1_new.docx (13.95 Ko) Télécharger le fichier
Supplemental Table 1_new.pdf (186.43 Ko) Télécharger le fichier
Supplemental data 1_new.docx (12.54 Ko) Télécharger le fichier
Supplemental data 1_new.pdf (94.98 Ko) Télécharger le fichier
Supplemental figure 1_new.pdf (3.18 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04414322 , version 1 (29-01-2024)

Identifiants

Citer

Alexandre Destere, Pierre Marquet, Marc Labriffe, Milou-Daniel Drici, Jean-Baptiste Woillard. A Hybrid Algorithm Combining Population Pharmacokinetic and Machine Learning for Isavuconazole Exposure Prediction. Pharmaceutical Research, 2023, 40 (4), pp.951-959. ⟨10.1007/s11095-023-03507-y⟩. ⟨hal-04414322⟩
54 Consultations
112 Téléchargements

Altmetric

Partager

More