Implicit Complexity over an Arbitrary Structure: Quantifier Alternations

Olivier Bournez 1 Felipe Cucker Paulin Jacobé de Naurois 1, 2 Jean-Yves Marion 2
1 PROTHEO - Constraints, automatic deduction and software properties proofs
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 CALLIGRAMME - Linear logic, proof networks and categorial grammars
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We provide machine-independent characterizations of some complexity classes, over an arbitrary structure, in the model of computation proposed by L. Blum, M. Shub and S. Smale. We show that the levels of the polynomial hierarchy correspond to safe recursion with predicative minimization and the levels of the digital polynomial hierarchy to safe recursion with digital predicative minimization. Also, we show that polynomial alternating time corresponds to safe recursion with predicative substitutions and that digital polynomial alternating time corresponds to safe recursion with digital predicative substitutions.
Type de document :
Article dans une revue
Information and Computation, Elsevier, 2006, 204 (2), pp.210--230
Liste complète des métadonnées

https://hal.inria.fr/inria-00000516
Contributeur : Olivier Bournez <>
Soumis le : mercredi 26 octobre 2005 - 18:55:52
Dernière modification le : jeudi 11 janvier 2018 - 06:19:57

Identifiants

  • HAL Id : inria-00000516, version 1

Collections

Citation

Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, Jean-Yves Marion. Implicit Complexity over an Arbitrary Structure: Quantifier Alternations. Information and Computation, Elsevier, 2006, 204 (2), pp.210--230. 〈inria-00000516〉

Partager

Métriques

Consultations de la notice

236