The complexity of class polynomial computation via floating point approximations

Andreas Enge 1, 2, 3, 4
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7161
3 LFANT - Lithe and fast algorithmic number theory
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : We analyse the complexity of computing class polynomials, that are an important ingredient for CM constructions of elliptic curves, via complex floating point approximations of their roots. The heart of the algorithm is the evaluation of modular functions in several arguments. The fastest one of the presented approaches uses a technique devised by Dupont to evaluate modular functions by Newton iterations on an expression involving the arithmetic-geometric mean. It runs in time $O (|D| \log^5 |D| \log \log |D|) = O (|D|^{1 + \epsilon}) = O ( h^{2 + \epsilon})$ for any $\epsilon > 0$, where $D$ is the CM discriminant and $h$ is the degree of the class polynomial. Another fast algorithm uses multipoint evaluation techniques known from symbolic computation; its asymptotic complexity is worse by a factor of $\log |D|$. Up to logarithmic factors, this running time matches the size of the constructed polynomials. The estimate also relies on a new result concerning the complexity of enumerating the class group of an imaginary-quadratic order and on a rigorously proven upper bound for the height of class polynomials.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2009, 78 (266), pp.1089-1107
Liste complète des métadonnées


https://hal.inria.fr/inria-00001040
Contributeur : Andreas Enge <>
Soumis le : vendredi 25 juillet 2008 - 11:36:06
Dernière modification le : jeudi 9 février 2017 - 15:13:29
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 17:35:12

Fichiers

class.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00001040, version 3
  • ARXIV : cs/0601104

Collections

Citation

Andreas Enge. The complexity of class polynomial computation via floating point approximations. Mathematics of Computation, American Mathematical Society, 2009, 78 (266), pp.1089-1107. <inria-00001040v3>

Partager

Métriques

Consultations de
la notice

694

Téléchargements du document

335