From a Closed Piecewise Geodesic to a Constriction on a Closed Triangulated Surface

Franck Hétroy 1 Dominique Attali 2
1 EVASION - Virtual environments for animation and image synthesis of natural objects
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Constrictions on a surface are defined as simple closed curves whose length is locally minimal. In particular, constrictions are periodic geodesics. We use constrictions in order to segment objects. In [Hetroy and Attali, VisSym 2003], we proposed an approach based on progressive surface simplification and local geodesic computation. The drawback of this approach is that constrictions are approximated by closed piecewise geodesics which are not necessarily periodic geodesics. In this paper, we compute constrictions starting from the closed piecewise geodesics previously computed and moving them on the surface. We compare the location of the initial closed piecewise geodesics to the location of the constrictions. Finally, we define and compute different types of constrictions on a surface.
Type de document :
Communication dans un congrès
J. Rokne, W. Wang, R. Klein. Pacific Graphics Conference on Computer Graphics and Applications, Oct 2003, Canmore, Alberta, Canada, France. IEEE Computer Society, pp.394-398, 2003
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00001145
Contributeur : Franck Hétroy-Wheeler <>
Soumis le : mercredi 9 novembre 2016 - 14:09:43
Dernière modification le : jeudi 11 janvier 2018 - 06:20:04
Document(s) archivé(s) le : mardi 14 mars 2017 - 23:00:26

Identifiants

  • HAL Id : inria-00001145, version 1

Collections

IMAG | INRIA | UGA

Citation

Franck Hétroy, Dominique Attali. From a Closed Piecewise Geodesic to a Constriction on a Closed Triangulated Surface. J. Rokne, W. Wang, R. Klein. Pacific Graphics Conference on Computer Graphics and Applications, Oct 2003, Canmore, Alberta, Canada, France. IEEE Computer Society, pp.394-398, 2003. 〈inria-00001145〉

Partager

Métriques

Consultations de la notice

288

Téléchargements de fichiers

195