Symmetric Boolean functions

Anne Canteaut 1 Marion Videau 1
1 CODES - Coding and cryptography
Inria Paris-Rocquencourt
Abstract : We present an extensive study of symmetric Boolean functions, especially of their cryptographic properties. Our main result establishes the link between the periodicity of the simplified value vector of a symmetric Boolean function and its degree. Besides the reduction of the amount of memory required for representing a symmetric function, this property has some consequences from a cryptographic point of view. For instance, it leads to a new general bound on the order of resiliency of symmetric functions, which improves Siegenthaler's bound. The propagation characteristics of these functions are also addressed and the algebraic normal forms of all their derivatives are given. We finally detail the characteristics of the symmetric functions of degree at most 7, for any number of variables. Most notably, we determine all balanced symmetric functions of degree less than or equal to 7.
Type de document :
Article dans une revue
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2005, 51 (8), pp.2791- 2811. <10.1109/TIT.2005.851743>
Liste complète des métadonnées


https://hal.inria.fr/inria-00001148
Contributeur : Marion Videau <>
Soumis le : dimanche 12 mars 2006 - 17:58:21
Dernière modification le : dimanche 12 mars 2006 - 19:18:51

Identifiants

Collections

Citation

Anne Canteaut, Marion Videau. Symmetric Boolean functions. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2005, 51 (8), pp.2791- 2811. <10.1109/TIT.2005.851743>. <inria-00001148>

Partager

Métriques

Consultations de
la notice

157

Téléchargements du document

608