A probabilistic representation of the solution of some quasi-linear PDE with a divergence form operator. Application to existence of weak solutions of FBSDE

Antoine Lejay 1, 2
1 OMEGA - Probabilistic numerical methods
CRISAM - Inria Sophia Antipolis - Méditerranée , UHP - Université Henri Poincaré - Nancy 1, Université Nancy 2, CNRS - Centre National de la Recherche Scientifique : UMR7502
Abstract : We extend some results on time-homogeneous processes generated by divergence form operators to time-inhomogeneous ones. These results concern the decomposition of such processes as Dirichlet process, with an explicit expression for the term of zero-quadratic variation. Moreover, we extend some results on the Itô formula and BSDEs related to weak solutions of PDEs, and we study the case of quasi-linear PDEs. Finally, our results are used to prove the existence of weak solutions to forward–backward stochastic differential equations.
Type de document :
Article dans une revue
Stochastic Processes and their Applications, Elsevier, 2004, 110 (1), pp.145-176. 〈10.1016/j.spa.2003.09.012〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00001228
Contributeur : Antoine Lejay <>
Soumis le : lundi 10 avril 2006 - 21:57:05
Dernière modification le : samedi 27 janvier 2018 - 01:31:51
Document(s) archivé(s) le : samedi 3 avril 2010 - 22:14:54

Identifiants

Collections

Citation

Antoine Lejay. A probabilistic representation of the solution of some quasi-linear PDE with a divergence form operator. Application to existence of weak solutions of FBSDE. Stochastic Processes and their Applications, Elsevier, 2004, 110 (1), pp.145-176. 〈10.1016/j.spa.2003.09.012〉. 〈inria-00001228〉

Partager

Métriques

Consultations de la notice

391

Téléchargements de fichiers

124