HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation

Optimal concave costs in the SDH context

Sébastien Choplin 1 Jérôme Galtier Stéphane Pérennes
1 MASCOTTE - Algorithms, simulation, combinatorics and optimization for telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : We address a problem of network design with minimum cost, and uniform all-to-all demands between the vertices. We deal with the case of concave increasing link cost function f depending of the capacity over directed arcs. We obtain lower bounds for this problem. In the generic case $f:x\mapsto x^\alpha$, where $\alpha\in[0;1]$, we exhibit some families that constitute an 1.12 asymptotical approximation of the optimal network.
Document type :
Complete list of metadata

Cited literature [1 references]  Display  Hide  Download

Contributor : Rapport de Recherche Inria Connect in order to contact the contributor
Submitted on : Friday, May 19, 2006 - 9:39:26 PM
Last modification on : Friday, February 4, 2022 - 3:19:54 AM
Long-term archiving on: : Sunday, April 4, 2010 - 9:55:25 PM


  • HAL Id : inria-00070791, version 1



Sébastien Choplin, Jérôme Galtier, Stéphane Pérennes. Optimal concave costs in the SDH context. RR-5201, INRIA. 2004, pp.11. ⟨inria-00070791⟩



Record views


Files downloads