Assessing the impact and limits of steady-state scheduling for mixed task and data parallelism on heterogeneous platforms

Olivier Beaumont 1 Arnaud Legrand 1 Loris Marchal 1 Yves Robert 1
1 GRAAL - Algorithms and Scheduling for Distributed Heterogeneous Platforms
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : In this paper, we consider steady-state scheduling techniques for mapping a collection of application graphs onto heterogeneous systems, such as clusters and grids. We advocate the use of steady-state scheduling to solve this difficult problem. While the most difficult instances are shown to be NP-complete, most situations of practical interest are amenable to a periodic solution which can be described in compact form (polynomial size) and is asymptotically optimal.
Type de document :
Rapport
[Research Report] RR-5198, INRIA. 2004, pp.44
Liste complète des métadonnées


https://hal.inria.fr/inria-00070794
Contributeur : Rapport de Recherche Inria <>
Soumis le : vendredi 19 mai 2006 - 21:39:52
Dernière modification le : samedi 17 septembre 2016 - 01:27:50
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:55:44

Fichiers

Identifiants

  • HAL Id : inria-00070794, version 1

Collections

Citation

Olivier Beaumont, Arnaud Legrand, Loris Marchal, Yves Robert. Assessing the impact and limits of steady-state scheduling for mixed task and data parallelism on heterogeneous platforms. [Research Report] RR-5198, INRIA. 2004, pp.44. <inria-00070794>

Partager

Métriques

Consultations de
la notice

200

Téléchargements du document

142