Worst Cases and Lattice Reduction

Damien Stehlé 1 Vincent Lefèvre 1 Paul Zimmermann 1
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We propose a new algorithm to find worst cases for correct rounding of an analytic function. We first reduce this problem to the real small value problem --- i.e. for polynomials with real coefficients. Then we show that this second problem can be solved efficiently, by extending Coppersmith's work on the integer small value problem --- for polynomials with integer coefficients --- using lattice reduction [4,5,6]. For floating-point numbers with a mantissa less than N, and a polynomial approximation of degree d, our algorithm finds all worst cases at distance < N [power](-d2/2d-1) from a machine number in time [OMICRON](N[power]((d-1)/(2d-1)+e)). For d=2, this improves on the [OMICRON](N- [power]((2/3)+e)) complexity from Lefèvre's algorithm [12,13] to [OMICRON](N[p- ower]((3/5)+e)). We exhibit some new worst cases found using our algorithm, for double-extended and quadruple precision. For larger d, our algorithm can be used to check that there exist no worst cases at distance < N[power]-k in time [OMICRON](N[power](1/2+[OMICRON](1/k))).
Type de document :
[Research Report] RR-4586, INRIA. 2002
Liste complète des métadonnées

Contributeur : Rapport de Recherche Inria <>
Soumis le : mardi 23 mai 2006 - 19:30:10
Dernière modification le : mardi 25 octobre 2016 - 16:57:46
Document(s) archivé(s) le : dimanche 4 avril 2010 - 22:48:19



  • HAL Id : inria-00071999, version 1



Damien Stehlé, Vincent Lefèvre, Paul Zimmermann. Worst Cases and Lattice Reduction. [Research Report] RR-4586, INRIA. 2002. 〈inria-00071999〉



Consultations de
la notice


Téléchargements du document