Point Processes in Fast Jackson Networks

Abstract : We consider a Jackson-type network, each of whose nodes contains $N$ identical channels with a single server. Upon arriving at a node, a task selects $m$ of the channels at random, and joins the shortest of the $m$ queues observed. We fix a collection of channels in the network, and analyse how the queue-length processes at these channels vary as $N\to\infty$. If the initial conditions converge suitably, the distribution of these processes converges in local variation distance to a limit under which each channel evolves independently. We discuss the limiting processes which arise, and in particular we investigate the point processes of arrivals and departures at a channel when the networks are in equilibrium, for various values of the system parameters.
Type de document :
Rapport
RR-4036, INRIA. 2000
Liste complète des métadonnées

https://hal.inria.fr/inria-00072602
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:22:29
Dernière modification le : vendredi 16 septembre 2016 - 15:12:41
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:15:09

Fichiers

Identifiants

  • HAL Id : inria-00072602, version 1

Collections

Citation

James B. Martin. Point Processes in Fast Jackson Networks. RR-4036, INRIA. 2000. 〈inria-00072602〉

Partager

Métriques

Consultations de la notice

58

Téléchargements de fichiers

68