Non Parametric Statistical Analysis of Scene Activity for Motion-Based Video Indexing and Retrieval

Ronan Fablet 1 Patrick Bouthemy 1 Patrick Pérez 1
1 VISTA - Vision spatio-temporelle et active
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This report describes an original approach for content-based video indexing and retrieval. We provide a global interpretation of the dynamic content of video shots without any prior motion segmentation and without any use of dense optic flow fields. To this end, we exploit the spatio-temporal distribution within a shot of appropriate local motion-related measurements issued from the spatio-temporal derivatives of the intensity function. These distributions are then represented by causal Gibbs models. The considered statistical modeling framework makes possible the exact computation of the conditional likelihood function of a video shot to belong to a given motion or more generally activity class. This property allows us to develop a general statistical framework for video indexing and retrieval with query by example. We build a hierarchical structure of the processed video base according to motion content similarity. We consider a similarity measure inspired from Kullback-Leibler divergence. Then, retrieval with query by example is performed through this binary tree using the MAP criterion. We have obtained promising results on a set of various real image sequences.
Type de document :
Rapport
[Research Report] RR-4005, INRIA. 2000
Liste complète des métadonnées

https://hal.inria.fr/inria-00072639
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:28:22
Dernière modification le : vendredi 16 novembre 2018 - 01:30:15
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:18:29

Fichiers

Identifiants

  • HAL Id : inria-00072639, version 1

Citation

Ronan Fablet, Patrick Bouthemy, Patrick Pérez. Non Parametric Statistical Analysis of Scene Activity for Motion-Based Video Indexing and Retrieval. [Research Report] RR-4005, INRIA. 2000. 〈inria-00072639〉

Partager

Métriques

Consultations de la notice

326

Téléchargements de fichiers

156