Speeding up the Division and Square Root of Power Series

Guillaume Hanrot 1 Michel Quercia Paul Zimmermann 1
1 POLKA - Polynomials, Combinatorics, Arithmetic
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We present new algorithms for the inverse, quotient, or square root of power series. The key trick is a new algorithm -- RecursiveMiddleProduct or RMP -- computing the $n$ middle coefficients of a $2n x n$ product in essentially the same number of operations -- $K(n)$ -- than a full $n x n$ product with Karatsuba's method. This improves previous work of Mulders, Karp and Markstein, Burnikel and Ziegler. These results apply both to series, polynomials, and multiple precision floating-point numbers.
Document type :
Reports
Complete list of metadatas

https://hal.inria.fr/inria-00072675
Contributor : Rapport de Recherche Inria <>
Submitted on : Wednesday, May 24, 2006 - 10:33:36 AM
Last modification on : Thursday, January 11, 2018 - 6:19:48 AM
Long-term archiving on : Sunday, April 4, 2010 - 11:17:52 PM

Identifiers

  • HAL Id : inria-00072675, version 1

Collections

Citation

Guillaume Hanrot, Michel Quercia, Paul Zimmermann. Speeding up the Division and Square Root of Power Series. [Research Report] RR-3973, INRIA. 2000, pp.20. ⟨inria-00072675⟩

Share

Metrics

Record views

472

Files downloads

673