Implicit Kinetic Schemes for Scalar Conservation Laws

Abstract : Based on kinetic formulation for scalar conservation laws we present implicit kinetic schemes. For timestepping the schemes require resolution of linear systems of algebraic quations. We justify that the developed implicit framework is very suitable for steady state calculations. Namely, we prove the convergence towards steady state when $ t \rightarrow \infty$. To our knowledge this is the first theoretical result of this type for nonlinear scalar conservation laws. Then for the equation with stiff source term we construct a stiff numerical scheme with discontinuous coefficients that ensure the scheme to be equilibrium conserving. We couple the developed implicit approach with the stiff space discretization thus providing improved stability and equilibrium conservation property in the resulting scheme. Numerical results demonstrate high computational capabilities (stability for large CFL numbers, fast convergence, accuracy) of the developed implicit approach.
Type de document :
[Research Report] RR-3972, INRIA. 2000
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 10:33:41
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:17:59



  • HAL Id : inria-00072676, version 1



Ramaz Botchorishvili. Implicit Kinetic Schemes for Scalar Conservation Laws. [Research Report] RR-3972, INRIA. 2000. 〈inria-00072676〉



Consultations de la notice


Téléchargements de fichiers