Skip to Main content Skip to Navigation
Reports

Small Noise Asymptotics of the Bayesian Estimator in Nonidentifiable Models

Marc Joannides 1 François Le Gland 2
2 SIGMA2 - Signal, models, algorithms
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes
Abstract : We study the asymptotic behavior of the Bayesian estimator for a deterministic signal in additive Gaussian white noise, in the case where the set of minima of the Kullback-Leibler information is a submanifold of the parameter space. This problem includes as a special case the study of the asymptotic behavior of the nonlinear filter, when the state equation is noise-free, and when the limiting deterministic system is nonobservable. As the noise intensity goes to zero, the posterior probability distribution of the parameter asymptotically concentrates on the submanifold of minima of the Kullback-Leibler information. We give an explicit expression of the limit, and we study the rate of convergence. We apply these results to a practical example where nonidentifiability occurs.
Document type :
Reports
Complete list of metadata

https://hal.inria.fr/inria-00072997
Contributor : Rapport de Recherche Inria <>
Submitted on : Wednesday, May 24, 2006 - 11:33:10 AM
Last modification on : Thursday, February 11, 2021 - 2:48:05 PM
Long-term archiving on: : Sunday, April 4, 2010 - 11:30:52 PM

Identifiers

  • HAL Id : inria-00072997, version 1

Citation

Marc Joannides, François Le Gland. Small Noise Asymptotics of the Bayesian Estimator in Nonidentifiable Models. [Research Report] RR-3675, INRIA. 1999. ⟨inria-00072997⟩

Share

Metrics

Record views

274

Files downloads

149