Small Noise Asymptotics of the Bayesian Estimator in Nonidentifiable Models

Marc Joannides 1 François Le Gland 2
2 SIGMA2 - Signal, models, algorithms
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes
Abstract : We study the asymptotic behavior of the Bayesian estimator for a deterministic signal in additive Gaussian white noise, in the case where the set of minima of the Kullback-Leibler information is a submanifold of the parameter space. This problem includes as a special case the study of the asymptotic behavior of the nonlinear filter, when the state equation is noise-free, and when the limiting deterministic system is nonobservable. As the noise intensity goes to zero, the posterior probability distribution of the parameter asymptotically concentrates on the submanifold of minima of the Kullback-Leibler information. We give an explicit expression of the limit, and we study the rate of convergence. We apply these results to a practical example where nonidentifiability occurs.
Type de document :
Rapport
[Research Report] RR-3675, INRIA. 1999
Liste complète des métadonnées

https://hal.inria.fr/inria-00072997
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 11:33:10
Dernière modification le : jeudi 7 juin 2018 - 23:54:01
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:30:52

Fichiers

Identifiants

  • HAL Id : inria-00072997, version 1

Citation

Marc Joannides, François Le Gland. Small Noise Asymptotics of the Bayesian Estimator in Nonidentifiable Models. [Research Report] RR-3675, INRIA. 1999. 〈inria-00072997〉

Partager

Métriques

Consultations de la notice

246

Téléchargements de fichiers

107